A Genetic Algorithm and PCA-Based Feature Selection to Improve the Failure Diagnosis Performance of Railway Vehicle Doors
نویسندگان
چکیده
The failure diagnosis of railway vehicle door system is carried out using a test bench and machine learning software for the fast accurate classification. signal length deviation exists in actual collected data normal operation abnormal failures with time delay. traditional multi-segmentation technique feature extraction has shortcomings by assuming that measured time-based signals have same operating time. However, uniform segmentation difficulty due to length. A method converting into position-based was performed overcome problem. optimized single-zone genetic algorithm proposed improve classification performance reduce computation time, instead existing technique. principal component analysis-based dimensional reduction explained variance ratio used effect from multi-collinearity features. Finally, combination methods compared individual validate support vector other classifiers. It confirmed shows highest accuracy 99.84%.
منابع مشابه
Feature Selection Based on Genetic Algorithm in the Diagnosis of Autism Disorder by fMRI
Background: Autism Spectrum Disorder (ASD) occurs based on the continuous deficit in a person’s verbal skills, visual, auditory, touch, and social behavior. Over the last two decades, one of the most important approaches in studying brain functions in autistic persons is using functional Magnetic Resonance Imaging (fMRI). Objectives: It is common to use all brain regions in functional extracti...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملFeature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملFeature selection algorithm based on Catastrophe model to improve the performance of regression analysis
In this paper we introduce a new feature selection algorithm to remove the irrelevant or redundant features in the data sets. In this algorithm the importance of a feature is based on its fitting to the Catastrophe model. Akaike information criterion value is used for ranking the features in the data set. The proposed algorithm is compared with well-known RELIEF feature selection algorithm. Bre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2022
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2022.3216885